B.A./B.Sc. Semester-VI MATHEMATICS (Numerical Analysis)

Paper-II

Time Allowed- 3 Hours]
[Maximum Marks-50
Note :-Attempt aty FIVE questions, selecting at least TWO question: irom wich section. All questions carry equal marks. Noi:-programmable scientific calculator is allowed.

SECTION-A

1. (a) If $u=3 v^{3}-6 v$, find the percentage error in u at $\mathrm{v}=1$, if the error in v i: 0.05 .
(b) Find the root of the eqiat on $x \log _{10} x=1.2$ by method of false position correci to four decimal places.
2. (a) Find the iterative formula for finding $\frac{1}{\sqrt{N}}=$ tor some positive real number N. Hence evaluate $\frac{1}{\sqrt{14}}$ corre \mathcal{U} to three decimal places.
(b) Find a real root of the equation $2 x=\cos x+3$ correct to three decimal places using iteration method.
3. (a) Show that order of convergence of Newton-Raphson method is 2 .
(b) Find a smallest positive root of the equation $f(x)=x^{3}-5 x+1=0$ correct to 3 decimal places using Muller's method.
4. (a) Apply Gauss elimination method to solve the equations $x+4 y-z=-5, x+y-6 z=-12$ and $3 x-y-z=4$.
(b) Using Lu frcomposition, solve the equation : $2 \mathrm{X}+\mathrm{Y}+2$? $=2 ; \mathrm{X}+\mathrm{Y}+3 \mathrm{Z}=4 ; \mathrm{X}+\mathrm{Y}+\mathrm{Z}=0$.
5. (a) Prove that:
(i) $\Delta \nabla=\Delta-V$
(ii) $\nabla=\Delta \mathrm{E}^{-1}$
(iii) $\delta=\nabla(1-\nabla)^{\frac{-1}{2}}$
(iv) $\mu=\left[1+\frac{\delta^{2}}{4}\right]^{1 / 2}$
(b) Find the inverse of the matrix $\left[\begin{array}{ccc}1 & 2 & 1 \\ 2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right] b_{\text {; }}$

Gauss-Jordon method.
www.a2zpapers.com

SECTION-B

6. (a) Given $y(21)=18.4708, y(25)=17.8144$, $y(29)=17.1070, y(33)=16.3432, y(37)=15.5154$. Find $y(30)$ using Gauss's forward formula.
(b) Use Stirling's formula to compute y (12.2) from the following table :

$\mathrm{X}:$	10	11	12	13	14
1.	0.23967	0.28060	0.31788	0.35209	0.38368

7. (a) The values of x and y are given below :

$\mathrm{X}:$	1.0	1.1	1.2	1.3	1.4	1.5	1.6
$\mathrm{Y}:$	7.939	8.403	8.781	9.129	9.451	9.750	10.031

Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d z^{2}} d t$:
(i) $\mathrm{x}=1.1$
(ii) $\mathrm{x}=1.6$.
(b) Use Bessel's formula to fir ${ }^{1} \mathrm{f}^{\prime}(0.04)$ given :

X :	0.01	0.02	0.0	r.ê	0.05	0.0
$F(x)$:	0.1023	0.1047	0.1071	(166	0.1122	0.1148

8. Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by using :
(i) Trapezoidal rule
(ii) Simpson's $1 / 3$ rule
(iii) Simpson's $3 / 8$ rule
(iv) Weddle's rule
upto four decimals. Also compare the results with actual value.
9. Use Milne's method to find a solution of the differential equation $\frac{d y}{d x}=x+y$ at $x=0.4$ for the initial condition $j(0)=1$.
10. (i) Siven $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=0$ with initial conditions $y\left(\rho ;=0\right.$ and $y^{\prime}(0)=1$. Find the solution at $x=0.1$ using Runge-Kutta $4^{\text {th }}$ order method.
(ii) Evaluate $1=\int_{i n}^{1} \int^{x+y} d x d y$ using trapezoidal and Simpson's rules siin $\mathrm{h}=\mathrm{k}=0.05$.
